Extensions 1→N→G→Q→1 with N=C32 and Q=C2×3- 1+2

Direct product G=N×Q with N=C32 and Q=C2×3- 1+2
dρLabelID
C3×C6×3- 1+2162C3xC6xES-(3,1)486,252

Semidirect products G=N:Q with N=C32 and Q=C2×3- 1+2
extensionφ:Q→Aut NdρLabelID
C321(C2×3- 1+2) = C9⋊He3⋊C2φ: C2×3- 1+2/C9C6 ⊆ Aut C32546C3^2:1(C2xES-(3,1))486,107
C322(C2×3- 1+2) = C34.C6φ: C2×3- 1+2/C32C6 ⊆ Aut C32186C3^2:2(C2xES-(3,1))486,104
C323(C2×3- 1+2) = C2×C9⋊He3φ: C2×3- 1+2/C18C3 ⊆ Aut C32162C3^2:3(C2xES-(3,1))486,198
C324(C2×3- 1+2) = C2×C34.C3φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C3254C3^2:4(C2xES-(3,1))486,197
C325(C2×3- 1+2) = C3×S3×3- 1+2φ: C2×3- 1+2/3- 1+2C2 ⊆ Aut C3254C3^2:5(C2xES-(3,1))486,225
C326(C2×3- 1+2) = C3⋊S3×3- 1+2φ: C2×3- 1+2/3- 1+2C2 ⊆ Aut C3254C3^2:6(C2xES-(3,1))486,233

Non-split extensions G=N.Q with N=C32 and Q=C2×3- 1+2
extensionφ:Q→Aut NdρLabelID
C32.1(C2×3- 1+2) = C2×He3⋊C9φ: C2×3- 1+2/C18C3 ⊆ Aut C32162C3^2.1(C2xES-(3,1))486,77
C32.2(C2×3- 1+2) = C2×3- 1+2⋊C9φ: C2×3- 1+2/C18C3 ⊆ Aut C32162C3^2.2(C2xES-(3,1))486,78
C32.3(C2×3- 1+2) = C2×C9⋊3- 1+2φ: C2×3- 1+2/C18C3 ⊆ Aut C32162C3^2.3(C2xES-(3,1))486,200
C32.4(C2×3- 1+2) = C2×C33⋊C9φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C3254C3^2.4(C2xES-(3,1))486,73
C32.5(C2×3- 1+2) = C2×C32.19He3φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C32162C3^2.5(C2xES-(3,1))486,74
C32.6(C2×3- 1+2) = C2×C32.20He3φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C32162C3^2.6(C2xES-(3,1))486,75
C32.7(C2×3- 1+2) = C2×C27⋊C9φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C32549C3^2.7(C2xES-(3,1))486,82
C32.8(C2×3- 1+2) = C2×C33.31C32φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C32162C3^2.8(C2xES-(3,1))486,201
C32.9(C2×3- 1+2) = S3×C32⋊C9φ: C2×3- 1+2/3- 1+2C2 ⊆ Aut C3254C3^2.9(C2xES-(3,1))486,95
C32.10(C2×3- 1+2) = S3×C9⋊C9φ: C2×3- 1+2/3- 1+2C2 ⊆ Aut C32162C3^2.10(C2xES-(3,1))486,97
C32.11(C2×3- 1+2) = C2×C3.C92central extension (φ=1)486C3^2.11(C2xES-(3,1))486,62
C32.12(C2×3- 1+2) = C6×C32⋊C9central extension (φ=1)162C3^2.12(C2xES-(3,1))486,191
C32.13(C2×3- 1+2) = C6×C9⋊C9central extension (φ=1)486C3^2.13(C2xES-(3,1))486,192

׿
×
𝔽